A Computational Framework for Cooperative 3D Printing Schedule

CIE 2019 Graduate Research Poster

Laxmi Prasad Poudel
Department of Mechanical Engineering, University of Arkansas
PhD Student, Graduate Research Assistant

Zhenghui Sha, Assistant Professor, Wenchao Zhou, Assistant Professor

Cooperative 3D Printing (C3DP) is a novel concept that integrates multi-robot system with 3D printing. It envisions large number of 3D printing robots along with assembly robots, working together to complete a print job. Cooperative 3D Printing mitigates the prominent issues of conventional 3D printing system without compromising the quality of the part.

- C3DP discretizes the continuous 3D printing process in discrete inter-coupled stages as shown on the flowchart on the right.

Research Questions

- **RQ1:** What chunking strategy can be used to divide a part into smaller chunks so that no post processing is required after C3DP?
- **RQ2:** What are the constraints (geometric, chunking and, scheduling) that must to be satisfied in order to enable cooperative 3D printing?
- **RQ3:** What approaches can be taken to integrate different stages of C3DP in a robust way?

Flowchart of the framework of computational framework

1. **Introduction**
2. **Chunking (RQ1)**
3. **Scheduling (RQ2)**
4. **Computational Framework (RQ3)**

References

We gratefully acknowledge the financial support from the U.S. National Science Foundation (NSF) Division of IIP through grant #1914249 and the Commercialization Fund from University of Arkansas Office of Economic Development.