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ABSTRACT
Research in systems engineering and design is increasingly focused on complex socio-technical systems whose

structures are not directly controlled by the designers, but evolve endogenously as a result of decisions and behav-
iors of self-directed entities. Examples of such systems include smart electric grids, Internet, smart transportation
networks, and open source product development communities. To influence the structure and performance of such
systems, it is crucial to understand the local decisions that result in observed system structures. This paper presents
three approaches to estimate the local behaviors and preferences in complex evolutionary systems, modeled as net-
works, from its structure at different time steps. The first approach is based on the generalized preferential attach-
ment model of network evolution. In the second approach, statistical regression-based models are used to estimate
the local decision making behaviors from consecutive snapshots of the system structure. In the third approach, the
entities are modeled as rational decision-making agents who make linking decisions based on the maximization of
their payoffs. Within the decision-centric framework, the multinomial logit choice model is adopted to estimate the
preferences of decision-making nodes. The approaches are illustrated and compared using an example of the au-
tonomous system (AS) level Internet. The approaches are generally applicable to a variety of complex systems that
can be modeled as networks. The insights gained are expected to direct researchers in choosing the most applicable
estimation approach to get the node-level behaviors in the context of different scenarios.

Keywords: Complex systems, decision making, multinomial logit choice models, evolutionary networks.

1 MOTIVATION FOR ESTIMATING LOCAL BEHAVIORS IN COMPLEX EVOLUTIONARY SYSTEMS
Research in engineering design and systems engineering has traditionally been focused on systems, such as automotive

and aerospace systems, whose structure is under the direct control of designers. The design of such systems starts with the
system-level requirements and is driven by top-down hierarchical decomposition, followed by the design for sub-systems
and components. The component-level designs are integrated into a complete system and validated against system-level
requirements. This general process is embodied in various systematic design methods (e.g., Pahl and Beitz [1]), systems
engineering models (e.g., Systems Engineering Vee [2]), and systems engineering processes adopted by organizations such
as NASA [3]. Due to the focus on such hierarchical design processes, the decision making literature within engineering
design and systems engineering is primarily focused on decisions made by the designers during the design process.

There is an increasing importance of complex socio-technical systems whose designs are not directly controlled by the
designers, but evolve as a result of decisions and behaviors of self-directed entities. An example of such a system is the
smart electric grid, which consists of a wide range of decision-makers including consumers, utilities, micro-grid operators,

Corresponding Author: Jitesh H. Panchal Paper number: MD-13-1289



and the other participants of the distribution infrastructure. The energy producers, distributors, and utilities independently
make technical decisions within rules and regulations to meet their objectives of system performance, reliability, security
and load demand while maximizing their profits. The decisions made by the stakeholders affect the technical, social, eco-
nomic, and environmental performance [4]. Other examples of such complex evolutionary systems include the Internet,
air-transportation networks, and smart vehicle networks. We refer to such systems as “endogenously” evolving systems
because their structures and properties are driven by the decisions made by entities within the system boundaries. In con-
trast, traditional hierarchical systems are exogenously designed by entities outside the system boundary. The key differences
between traditional hierarchical systems and complex evolutionary systems are summarized in Table 1.

[Table 1 about here.]

Due to their fundamentally different nature, traditional top-down design approaches, discussed above, are not suitable
for such complex evolutionary systems. From a design standpoint, the fundamental difference is that instead of directly
controlling the system structure, the behaviors of the interacting entities must be modified in a bottom-up manner to achieve
the desired system performance (such as robustness and resilience). Such modification of behavior can be achieved through
the provision of incentives, imposition of penalties or taxes, and definition of rules. Therefore, the role of design in the
context of complex evolutionary systems is different, thereby posing unique challenges from an engineering systems design
standpoint.

A specific class of complex evolutionary systems consists of systems whose structure is modeled as endogenous net-
works in which the nodes1 make local decisions about linking with other nodes. The underlying dynamics of complex
endogenous networks can be understood by modeling the mappings across five levels, shown in Figure 1. The network struc-
ture (level 3) emerges from the node-level linking behavior (level 2), which is driven by the node-level preferences (level 1).
The preferences of the nodes refer to the utility functions that the nodes maximize. The network structure in turn determines
the network properties (level 4) and network performance (level 5). Consider the example of the Internet at an autonomous
system (AS) level, where a node represents an AS and a link represents communication between two autonomous systems.
The nodes make strategic decisions about linking with other autonomous systems in order to route data. These local de-
cisions affect the global structure of the Internet. The global structure in turn affects its robustness and resilience to node
failure (i.e., the performance). Thus, the node-level behavior is crucial to understanding the overall network performance.

[Fig. 1 about here.]

The process of traversing from the lower to the higher levels (i.e., 1 to 5) is analysis, in which the performance of
the network is determined in terms of the node-level preferences and behaviors. On the other hand, achieving targeted
performance by determining how to modify the node-level preferences can be viewed as a design problem [5]. To address
the design problem in endogenous networks, it is crucial to understand the node-level preferences that result in observed
network structures, and how the node-level preferences and behaviors influence the overall network structure. The focus in
this paper, as shown in Figure 1, is on the estimation of node-level behaviors and preferences. Estimating the node-level
preferences and behaviors in real-world networks can help in:

1. accurately modeling the evolutionary dynamics of endogenous networks, and
2. determining mechanisms for influencing the node-level behaviors and the provision of incentives to achieve targeted

system performance.

The local behaviors in complex evolutionary systems can be estimated in two different ways. First, the local behaviors
can be directly estimated by conducting surveys and interviews of the decision makers involved in making decisions. How-
ever, in many cases, the designer may not have direct access to the decision makers. In such cases, an alternate approach
is to infer the decisions indirectly from the decision patterns from past data. In complex networks, this can be achieved by
estimating local behaviors from the system’s structure itself. In this paper, we present three approaches to estimate the node-
level behaviors and preferences in complex endogenous networks from their structure at different time steps. The inputs are
data about nodes and their connectivity at discrete timesteps, and the outputs are behaviors of the nodes. The approaches
are discussed in Section 2 and illustrated in Section 3 using the AS-level Internet network, which is an example of complex
evolutionary system. The approaches are used to estimate the AS-level linking behavior that results in the observed evolution
of the Internet. A comparative analysis of the three approaches is presented. Closing thoughts are presented in Section 4.

2 APPROACHES FOR ESTIMATING NODE-LEVEL BEHAVIORS

1In network terminology, a network is composed of nodes and links. A network can be mathematically represented as a graph where nodes are
represented as vertices and the links are represented as edges. Within complex networked systems, a node can refer to individual decision makers or other
entities such as organizations that make decisions.
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An overview of the three approaches proposed in this paper is presented in Table 2. The first approach is based on
hypothesized node-level behaviors. The node-level behavior is considered to represent reality if the generated networks
have structures similar to the real networks. These models are primarily used for explaining the evolution of real-world
complex systems. In this paper, we adopt the generalized preferential attachment (GPA) [6] as the hypothesized node-
level behavior model. The parameters in this model can thus be estimated based on the relationship between the network
structure and the degree-based node-level behavior (probability of linking) which is derived from the continuum theory of
network evolution presented by Albert et al. [7].

[Table 2 about here.]

In the second approach, the node-level behaviors are derived by analyzing how the networks change between two
consecutive instances. The nodes and links created (or removed) between the two instances are extracted first, and the node-
level behavior is deduced by using statistical regression techniques. In this paper, we propose to estimate the node-level
behaviors with linear regression model.

In the third approach, network evolution is modeled as a decision-making process where the nodes are decision-making
agents and their behaviors are based on utility maximization. While the first two approaches can help in revealing the node
level behavior, the node-level preferences are not deduced from the network structure. The third approach can be used to
determine both the behavior and the node-level preferences. We adopt the multinomial logit choice model to estimate
the local entities’ preferences and behaviors, but we develop the method to deal with large choice set so that the proposed
approach can be applied to the large scale complex systems.

Our rationale for choosing GPA is that it is one of the widely used approaches for modeling complex networks. GPA
has also been used for modeling the Internet topology and its properties. Statistical regression techniques are chosen for
comparison purposes because they are widely used within the design literature for data-driven modeling in complex systems.
We propose the use of decision-based models (third approach) to capture the node-level preferences, which are not currently
modeled within the literature. To ensure that the comparison between the models is meaningful, we use the same input data
in all approaches, and we only consider the structural aspects of the networks in the decision model. Details of the three
approaches are presented next.

2.1 Approach 1: Generalized Preferential Attachment
The preferential attachment model for complex networks was initially proposed by Barabasi and Albert [6]. In this

model, a new node preferentially links to existing nodes based on certain characteristics of the target node. Network evolution
in this approach is assumed to follow two mechanisms: growth and preferential attachment [8]. The growth mechanism
prescribes that at each time step, one new node is added with m edges linking the new node to m existing nodes in the
network. In the simple preferential attachment model initially proposed by Barabasi and Albert [6], the probability of link
creation between a new node and an existing node is linearly proportional to the degree of an existing node.

Preferential attachment has been widely accepted in the field of complex networks research and has been utilized for
modeling real-world complex networks such as the Internet [9], the World Wide Web [10], and networks of metabolic
reactions [11]. Existing literature [12] has shown that the degree-based preferential attachment mechanism has better per-
formance in modeling real-world complex evolving networks with a power-law degree distribution. The degree-based linear
preferential attachment model has been extended to generalized preferential attachment (GPA). An overview of GPA is
presented next.

2.1.1 Overview of generalized preferential attachment (GPA)
In the GPA model, the affinity of a node to link with an existing target node j at time t is modeled as:

Vj(t) = G j(t)dτ
j(t)+A j(t) (1)

where, the V,G,A and d are functions of the node j and time t. G j(t) is the fitness value of node j at time t, and A j(t) is the
additional attractiveness of node j at time t. d j(t) stands for the degree of node j at time t, which is the number of neighbors
of node j. Using Equation (1), the probability of an arbitrary node j getting chosen for connection among J nodes is equal
to:

Pj =
Vj(t)

∑
J
i=1 Vi(t)

=
G j(t)

∑
J
i=1 Vi(t)

d j(t)+
A j(t)

∑
J
i=1 Vi(t)

(2)
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This probability function is assumed to result in the evolution of the network between two time steps. Furthermore, it is
assumed that i) the network is undirected, ii) the fitness value for all the nodes is the same and is time independent, thus Gi(t)
is constant, iii) the additional attractiveness for each node is time independent and a constant, thus Ai(t) is constant, and iv)
the affinity V in Equation (1) is a linear function of the node degree, i.e., τ = 1. Therefore, Equation (1) can be modeled as:

Vj(t) = d j(t)+A j (3)

These assumptions are made to enable direct comparison with the other two approaches. By relaxing these assumptions,
detailed models with more parameters can be generated. For example, if a directed network is used, then two separate
probabilities are needed to model the creation of incoming and outgoing links. If different fitness values are used for different
nodes, an additional parameter is added for each node, which increases the data requirements for parameter estimation.
Similarly, considering time varying additional attractiveness also adds additional parameters in the model. Hence, for the
purpose of this comparative study, we decided to limit the number of parameters. In the future studies, we will investigate
the effects of relaxing these assumptions.

If G j(t) is assumed to be the same for all nodes, its impact can be accounted for by scaling the additional attractiveness
parameter as follows:

Pj =
Vj(t)

∑
J
i=1 Vi(t)

=
Gd j +A j

∑
J
i=1 (Gdi +Ai)

=
d j +

A j
G

∑
J
i=1

(
di +

Ai
G

) (4)

The additional attractiveness (A) and the node’s degree determine the complete behavior model of a linking node. Based
on the prior work by Sha and Panchal [5], it has been shown that additional attractiveness (A) has a significant impact on
the network structure and network performance. The additional attractiveness is estimated through the degree distribution
function obtained by using the continuum theory of network evolution, discussed next.

For analyzing the evolutionary process in this model, the continuum theory approach proposed by Albert et al. [7]
provides a bridge between the network structure and the node-level properties such as the degree. With the continuum theory,
the effect of additional attractiveness (A) on the structure, specifically the degree distribution of the resulting network, can be
analyzed. According to the growth mechanism described above and the model proposed in Equation (3), the changing rate
of a node j’s degree d j is given by:

∂d j

∂t
= m

d j +A

∑
J−1
i=1 (di +A)

(5)

where m is the number of edges linking to a new node in each timestep. Following the steps in [6], as the network becomes
large,

lim
t→∞

P[d j(t)≥ d] =
(

d +A
m+A

)−γ

(6)

Thus, as t→ ∞, the asymptotic complementary cumulative degree distribution (CCD) has the form:

F(d) = P [d j(t)≥ d] ∝ d−γ (7)

where,

γ = f (m,A) =
(

2+
A
m

)
(8)

Equation 8 indicates that different degree distributions are associated with different A values. Hence, the A value can be
used to differentiate the network structures. The degree distributions generated for representative values of A are illustrated
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in Figure 2. By fitting the power-law degree distribution, we can determine the exponent γ using regression techniques to
deduce the values of additional attractiveness, A, which defines the node-level behavior (Equation (4)). In Section 2.1.2, we
introduce the techniques used for fitting the power law degree distribution.

[Fig. 2 about here.]

2.1.2 Fitting the Power-law Degree Distribution
A simple approach for fitting the power law degree distribution is the ordinary least square (OLS) regression [13]. The

power law distribution in Equation (6) follows a straight line on a double logarithmic plot. Therefore, a commonly adopted
technique to estimate the power law behavior in empirical data is to measure the frequency of nodes with degree d in the
network and to plot such frequency on the double logarithmic axis. Then, a linear model:

y = β0 +β1x+ ε (9)

can be used where β0 is the intercept, β1 is the slope and ε is the random error in the observation. The OLS regression can
be utilized to fit the power law degree distribution with variable x equal to ln(d) and observation value y equal to ln(P). The
estimation on the parameter β1, which is the slope, γ, is the exponent in the power law.

In practice, the power law often applies only for values greater than some minimum value xmin. In such cases, the OLS
regression method can produce inaccurate estimates of the parameters for power law distributions especially for the “tail”
of the distribution where the values are under xmin. To address this issue Clauset et al. [14] proposed an effective statistical
framework for fitting the power law distribution to empirical data. The approach combines maximum likelihood fitting with
goodness-of-fit tests based on the Kolmogorov-Smirnov (KS) statistic and likelihood ratio [15]. The key idea for estimating
the exponent, γ, correctly is to first identify the lower bound xmin of power law behavior in the data. Hence, the parameter
xmin is first chosen, and then γ of the power law is fit using maximum likelihood estimation. Then, with the estimated xmin
and γ in the first step, the power law hypothesis is tested by calculating the p-value for goodness-of-fit test that quantifies the
plausibility of the hypothesis. A power law hypothesis is considered plausible for the data if the resulting p-value is greater
than 0.1. Finally, the power-law models derived using alternate values of xmin are compared via a likelihood ratio test [16].
If the calculated likelihood ratio is significantly different from zero, then its sign indicates whether an alternative is favored
or not.

Once we have the estimation on the exponent γ in the power law, we can obtain the additional attractiveness (A) using
Equation (8). The m values for different networks can be obtained by plotting the number of nodes (J) versus the number of
edges (E) in the network over time. An OLS regression between the number of new nodes and the number of new links can
be used to estimate m. An illustrative example is presented in Section 3.3.1.

2.2 Approach 2: Statistical Regression-based Model
In the second approach, the linking behavior is determined by comparing two consecutive instances of the network struc-

ture. The node-level behavior is then obtained by fitting the node-level linking probability data using regression techniques.
Consider a complex endogenous network that evolves from network N(t0) to network N(t1) during an interval [t0 t1]. In
order to obtain the behavior of the added nodes, we calculate each target node’s probability of getting a connection from the
newly added nodes.

From the datasets N(t0) and N(t1), we obtain the number of new nodes entering the network during [t0 t1]. For each
newly added node, the target nodes are identified. Based on the network structure from the dataset N(t0), the degrees of
these target nodes are extracted. In the following step, all nodes in N(t0) are divided into different groups based on their
degrees. All nodes with degree d are grouped into a group Sd . The number of nodes within a group Sd is represented as nd .
If the number of new links created with existing nodes in Sd is denoted by ld , and the total number of links created during
the interval [t0 t1] is L, then the probability of a group Sd receiving a link is:

P(Sd) =
ld
L

(10)

This is based on the assumption that each linking decision made by a node is a mutually exclusive event, the probability
of all nodes getting a connection in the same group is the sum of the probability of each node in this group getting a
connection. Considering all nodes to be identical, an individual node with degree d has the following probability of receiving
a connection:

P(d) =
1
nd

P(Sd) (11)
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Once the probability of an individual node with degree d getting connections has been determined, the degree versus
probability relationship is plotted. By using an appropriate fitting model using OLS regression, the node-level behavior can
be obtained. The application of the proposed approach for the case study is presented in Section 3.3.2.

2.3 Approach 3: Multinomial Logit Choice Model
In the third approach, we model the network evolution using a decision-making framework. Here, each new node is

considered as a decision maker that maximizes its own utility function, u. Say a node i is a decision maker at time t, its
decision on which target node j to link to is based on the maximization of ui based on the network topology at time t. At a
given time, node i has J alternatives to choose from. The decision-maker node i selects a target node j for creation of an edge
based on the utility function. The utility function, ui, can depend on the structural parameters of the nodes (e.g., degrees), or
non-structural factors (e.g., capacity, cost, etc.).

We use the random utility discrete choice models (DCM) to estimate the utility functions that the nodes maximize while
selecting other nodes to link to. Specifically, we use the multinomial logit choice model to model the decisions of the nodes.
A brief introduction to DCM and multinomial logit is provided in Section 2.3.1. Modeling the network evolution using the
multinomial logit choice model is discussed in Section 2.3.2.

2.3.1 Discrete Choice Model and Multinomial Logit
Multinomial logit is a technique for discrete choice analysis (DCA) [17] in which the size of the choice set, J, for

the decision maker is greater than two. DCA has been widely used to model and forecast product demand by capturing
individual customers’ choice behavior, especially for demand estimation [18]. Earlier applications were in the field of
transportation engineering, but later, DCA was extended to the field of product design to model consumer preferences under
uncertainty [19]. DCA is based on the assumption that individuals seek to maximize their personal utility, u, when selecting
an alternative from the choice set. The decision maker knows the utility function and uses it for making decisions. However,
the observer is only able to observe the choices made by the decision maker. Therefore, from the observer’s perspective, the
utility function is random. DCA assumes that the individual’s utility is a sum of two components [20]:

1. Systematic component, denoted by Vj, which is a function of different observed attributes x j of the alternatives which can
be either alternative specific or decision-maker specific [21]. It is assumed that this component is a linear combination
of the observed attributes: Vj = β j

T · x j where β j are the parameters corresponding to the observed attributes x j. The
observed attributes can also be referred to as the explanatory variables that describe the decision maker’s utility function.
It is important to note that this component is deterministic from the observer’s point of view.

2. Unobserved component, ε j, which can be represented as a random variable from the observer’s point of view. This error
term includes the impact of all unobserved variables that affect the utility of a specific alternative. Thus,

u j = β
T
j · x j + ε j (12)

Based on utility maximization, the probability that alternative 1 is chosen by the decision-maker n from a choice set
containing two alternatives, is equal to the probability that the utility of alternative 1 is greater than the utility of alternative
2. This can also be represented as:

Pn(1|[1,2]) = Pn(u1n > u2n)

= Pn(V1n + ε1n >V2n + ε2n)

= Pn(ε1n− ε2n >V2n−V1n)

(13)

In order to predict the choice probability, methods such as binary logit, probit, multinomial logit and mixed logit [20] can
be used. The primary difference between these models is the assumption about the probability distribution of the unobserved
component. In this paper, we use the multinomial logit model where the error terms ε j are assumed to be independent and
identically distributed across choice alternatives and observations (decision-maker), and follow a Gumbel distribution [17].
Then, the probability that decision-maker n chooses alternative 1 over alternative 2 is:

Pn(1|[1,2]) = Pn(u1n > u2n) =
eV1n

eV1n + eV2n
(14)
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The binary alternatives scenario has been extended to the Multinomial Logit (MNL) model, see Equation (15), that
describes the probability of alternative j being chosen by decision-maker n from among a choice set containing J alternatives.

P( j|CJ) =
eV jn

∑
J
i=1 eVin

(15)

Estimation techniques such as the maximum likelihood and Bayesian estimation can be used to determine the coefficients β

in Equation (12) such that the model’s prediction of choices matches the observed choices as closely as possible. In practice,
existing statistical analysis software can be used for estimation of parameters in a multinomial logit model. In this paper, the
mlogit package [22] for R [23] is used.

2.3.2 Describing the Network Evolution using the Multinomial Logit Model
If the complex network evolution is based on node-level decision-making process, the principles from discrete choice

theory can be utilized to estimate the utility function, and the resulting choice probability (i.e., the probability of a newly
added node in N(t1) choosing an existing node from network N(t0)). The choice probabilities of individual nodes can then
be aggregated to estimate the aggregate node-level behaviors.

In the multinomial logit choice model, the observations from a researcher’s point of view are the newly added nodes
who choose a target node to link to. The alternatives are the existing nodes during the previous time step. For the selection of
each node’s utility, if the observed variable x in the systematic component is only alternative specific, e.g., the node’s degree,
then the systematic component is:

Vj = β0 j +β1 jd j (16)

This corresponds to Equation (1) in which β0 j stands for the additional attractiveness and β1 j is the node fitness. The
resulting probability of the node alternative j that gets connection from the decision-making node n is given by Equation (15).
Note that this is fundamentally different from Equation (4). Finally, the parameters β0 j and β1 j can be estimated using
maximum likelihood estimation techniques.

For large sized networks, the choice set may be large (e.g., over 10,000 nodes). To reduce the complexity of parameter
estimation, the size of the choice set can be reduced by grouping the nodes with same degree together as one alternative. The
resulting probability is the one that a group is chosen over other groups by a newly added node. The probability of connecting
to a node within a group can then be obtained by randomly choosing a node from the group to which that individual node
belongs.

The utility function can be further refined by considering other structural and non-structural parameters of the network.
By considering more attributes of the alternatives, such as, the clustering coefficient [24], and betweenness centrality [25]
different hypotheses about the utility functions can be generated and tested. Through this approach, accurate models of
choices that match the observed choices can be obtained, and the factors (besides node’s degree) that constitute the additional
attractiveness of a node can be investigated. Hence, this approach is richer than the two approaches described in Sections 2.1
and 2.2.

3 ILLUSTRATIVE EXAMPLE: AS LEVEL INTERNET TOPOLOGY
In this section, the approaches discussed in Section 2 are applied to the autonomous system (AS) level Internet network.

While the approaches are applicable to a variety of complex networked systems, the Internet is chosen as an example
because of the availability of data. The goal here is to illustrate how these approaches can be implemented in practice to
deduce the AS-level behaviors and decisions that result in the observed evolution of the Internet. As discussed in Section 1,
the Internet is an ideal example of a complex evolving system that has emerged based on the decisions made by independent
decision making entities. Estimation of local decision-making behaviors of the entities is important for understanding how
the structure of the network evolves. The knowledge of the local behaviors can help in providing incentives to the autonomous
systems to direct their linking behavior towards structures with desired performance characteristics such as robustness and
resilience. A brief introduction to the AS-level Internet is provided in Section 3.1. The dataset of the AS-level Internet
network is described in Section 3.2. The results from the different approaches are presented in Section 3.3. Finally, a
discussion of the results is presented in Section 3.4.

3.1 Introduction to AS-level Internet
The Internet is a network of interconnected computers consisting of private, public, academic, business, and government

networks linked by various networking technologies. The Internet network can be treated as an endogenously evolving
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complex network because of the decentralized governance in usage and access policies. The topology of the Internet can be
studied at three different levels [26]:

1. IP level, which is composed of the interfaces of routers that exchange information because each interface owns an IP on
the Internet.

2. Router level, which is the interconnection of routers on the Internet. It represents cables, satellite or radio links, etc.
This physical infrastructure is the one over which information is routed.

3. AS level, which models the way autonomous systems are interconnected. The Internet can be divided into thousands of
domains connected with each other. Each domain is a collection of hosts connected via routers and switching facilities.

An AS is defined as “a connected group of one or more IP prefixes run by one or more network operators which
has a single and clearly defined routing policy” [27]. Examples of autonomous systems include ISPs, corporate networks,
and universities. An ISP can have one or more autonomous systems. Autonomous systems are connected via dedicated
links or public network access points. A link between two autonomous systems represents a contract to forward data to
each other over the link. Each AS can choose its policy to select the best route for data based on commercial contractual
relationships. These contracts and AS-level policies play a significant role in determining the structure of the Internet and
its overall performance [28]. The AS-level topology also influences the definition of routing protocols such as the Border
Gateway Protocol (BGP). Hence, it is an important and appropriate level of abstraction to model the decisions that result in
the structure of the Internet.

3.2 Data source
Publicly available data sources are available for Internet network data. Skitter, Archipelago (Ark) from Cooperative

Association for Internet Data Analysis (CAIDA) [29] and the RoutView [30] from the University of Oregon are the three
main projects for collecting the Internet topology data at the AS level. Specifically, the Ark project is an upgraded version of
the previous Skitter project operated by CAIDA after Skitter served nearly a decade and was retired on Feb. 8th, 2008 [29].

The dataset adopted in this paper is from CAIDA AS Relationships Dataset from January 2004 to November 2007.
There are 122 files in total, each file containing a full AS graph derived from a set of BGP table snapshots used to exchange
routing information between ASes.

3.3 Estimating the AS-Level Behavior in Internet Network using the Three Approaches
In this section, we present the results from the three approaches, starting with the Generalized Preferential Attachment

(GPA) approach.

3.3.1 Results from Approach 1: Generalized Preferential Attachment
The first step in this approach is to develop a fit for the degree distribution of the network. Figure 3 shows an example

degree distribution for the AS-level Internet on Jan. 5th,2004, along with the OLS regression model. The figure shows that
a power law [31] is a good fit for the degree distribution of the network. Since the degree distribution is plotted on double
logarithmic axes, the slope of the fitting line is the exponent γ in the power law relation (see Equation (9)).

[Fig. 3 about here.]

To determine how the power law distribution changes with time, we extract the exponents of the degree distribution for
all 122 snapshots of the network from 2004 to 2007. Since the network size increases monotonically over time, the exponent
is plotted against the network size that corresponds to each network at each time in the x-axis. The exponents are plotted in
Figure 4. It is observed that this exponent γ increases with the network size.

[Fig. 4 about here.]

Based on Equation (8), the additional attractiveness (A) in the node-level behavior model can be evaluated using the
exponents (γ) and the number of new links added in each time step (m). The m-value can be identified by plotting the number
of nodes (J) vs. the number of edges (E) as the network grows. This plot is shown in Figure 5. It is observed from the figure
that the number of edges increases linearly with the number of nodes. The slope of the line shows that for each new node,
about 2 new edges are added. This indicates that m≈ 2.

[Fig. 5 about here.]

The additional attractiveness, A, can be calculated using m and γ based on Equation 8. We obtain that the A-value
increases from -1.78 to -1.73. One-tail test on the slope of the fitting function for the parameter γ (i.e., Sγ) is performed. The
t-statistic corresponding to {H1

0 : Sγ = 0 vs. H1
1 : Sγ > 0} is 21.34, resulting in the p-value < 0.001. Hence, we claim that the
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slope of γ1 is statistically significant. This indicates that as the Internet grows, the additional attractiveness in the network
increases, which impacts the node’s linking preference. The impact of additional attractiveness on the linking behavior is
discussed in detail by Sha and Panchal [5]. As A increases, more nodes have the opportunity to be connected.

We also used the approach suggested by Clauset et al. [16] (discussed in Section 2.1.2) to fit the degree distribution using
the maximum likelihood estimator. The resulting exponents for the 122 networks are shown in Figure 6. By performing the
t-test on the slope in the figure, the p-value corresponding to {H0 : Sγ = 0 vs. H1 : Sγ 6= 0}, where Sγ is the slope of the
parameter γ, is 0.14. Hence, there is no statistically significant change in γ. Note that the exponents in the power-law shown
in Figure 6 are also greater than those in Figure 4. This can be explained as follows. The main difference in this method is
that a minimum bound value xmin is estimated beyond which the fit is close to power law, and the “tail” of the distribution
with values of degree lower than xmin are not considered in the fitting. Therefore, the resulting power law curve is only for
the part of the data that is regarded as a true power law. Since the change in degree for the nodes that have low degree in the
network is not substantial, the fit for that part of data does not change significantly. Because of the positive linear relationship
between the exponent γ and the A value, the A value in turn remains unchanged as the network grows.

[Fig. 6 about here.]

3.3.2 Results from Approach 2: Statistical Regression
In this section, we utilize the approach presented in Section 2.3 to the AS-level. Figure 7 shows the node-level linking

behavior (i.e., probability of new node linking to an existing node) in three pairs of consecutive network snapshots:

a) Jan. 5th, 2004 (N1) - Feb. 2th, 2004 (N2),
b) Aug. 28th, 2006 (N59) - Sep. 4th, 2006 (N60), and
c) Nov. 5th, 2007 (N120) - Nov. 12th, 2007 (N121).

[Fig. 7 about here.]

The plot is shown on a log-log scale. We use the degrees of existing nodes based on the previous snapshot of the network
structure. We fit the data with a power function y = αxβ where y is the probability of linking to a node, and x is the degree of
the target node. Thus, the linking probability of the node j is:

Pj = αd j
β (17)

The parameters α and β are estimated using OLS regression on ln(d) vs ln(P). Furthermore, as shown in the figure, the
parameters of the three fitting functions are close to each other, which indicates that the node-level behavior is consistent
over time. This conclusion about the node-level behavior is different from the one obtained using the first approach (see
Figure 4). However, the result is in agreement with the fit using the maximum likelihood estimation (see Figure 6).

To further validate this conclusion, we extract the node-level behaviors from all the 121 changes in the network from
Jan. 2004 and 2007, and then determine the parameters of the fit (α and β). Figures 8 and 9 show the two parameters for
the 121 timesteps. We performed two separate hypothesis tests to detect whether there have been any statistical significant
changes in α and β over the 121 evolutions. The p-value corresponding to {H1

0 : Sα = 0 vs. H1
1 : Sα 6= 0} and {H2

0 : Sβ = 0 vs.
H2

1 : Sβ 6= 0} are 0.03 and 0.04 respectively. Here, Sα and Sβ are the slopes corresponding to parameters α and β in Figures 8
and 9 respectively. Hence, we claim that there has been no statistically significant change in slopes of these two parameters
at a 2% level of significance. Hence, we conclude that the node-level behavior of the ASes is consistent during 2004 and
2007. The average values of the parameters α and β are 1.97×10−5 and 0.959 respectively. Using these two parameters, we
can determine the linking behavior in terms of the probability of linking to a node with degree (d) using Equation 17.

[Fig. 8 about here.]

[Fig. 9 about here.]

3.3.3 Results from Approach 3: Multinomial Logit Choice Model
In this section, we apply the multinomial logit model to deduce the node-level utility given the assumption that the

node-level decision follows the form of Equation (15). In the multinomial logit choice model, each existing node is an
alternative. The size of the network is large (e.g., the number of nodes in the network of Jan. 5th, 2004 is 16301). Hence,
to reduce the computational burden, the size of the choice set is reduced by grouping the nodes with same degree together
as one alternative. The resulting probability is that of a newly added node selecting a given group representing a particular
degree. An individual node’s probability of getting a connection can then be obtained by assuming that all nodes within a
group have the same probability.
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In order to use the multinomial logit model, the first step is to identify the attributes to be considered in the systematic
component of the utility function. We consider two aspects in the utility function: the node’s degree (d j) and the number of
nodes with degree (n j). Instead of using these parameters directly in the utility function, we use the natural logarithms of
these parameters as the attributes of the nodes. Hence,

Vj = β1 ln(d j)+β2 ln(n j) (18)

where β1 is the parameter corresponding to degree d j, β2 is the parameter corresponding to group size n j. This choice of
the functional form is used because it results in a node-level behavior that can be directly estimated using existing multinomial
logit algorithms. The parameters β1 and β2 denote the preferences of the decision-making nodes on degree and group size.
Thus the utility function based on Equation (12) is:

u j = β1 ln(d j)+β2 ln(n j)+ ε j (19)

The resulting probability that the group j is chosen by node n in a network is:

Pn( j|CJ) =
dβ1

j nβ2
j

∑
J
i=1 dβ1

i nβ2
i

(20)

[Fig. 10 about here.]

[Fig. 11 about here.]

The parameters β1 and β2 can be estimated by using the information from the observed network structure datasets. Thus the
utility function in Equation (19) can be determined. We estimate the parameters β1 and β2 for all the 122 network datasets.
The parameters are plotted against the network size in Figures 10 and 11. It is observed in Figure 10 that the parameter (β1)
has an average value of 0.672 for network size smaller than 21000 nodes (corresponding to the Internet network on Jan. 2,
2006), and an average value of 0.428 afterwards. This is verified through hypothesis tests on the slope, as discussed in the
previous section. The p-values corresponding to {H1

0 : Sβ1 = 0 vs. H1
1 : Sβ1 6= 0} for network size, J ≤ 21000 and J > 21000

are 0.03 and 0.11 respectively. We cannot reject the null hypothesis at a 2% level of significance. Hence, we claim that
there has been no statistically significant change in slopes of β1 within ranges J ≤ 21000 and J > 21000. The parameter
(β2) follows a similar trend. The average value of β2 for J ≤ 21000 is 0.661 (p-value = 0.12) and for J > 21000, the average
value of β2 is 0.525 (p-value = 0.06).

3.4 Comparison of the Node-level Behaviors and Resulting Networks Using the Three Approaches
In this section, compare the node-level behaviors obtained by the three approaches and evaluate the generated network

structures for a given time. We also discuss the generality, extensibility and computational capability of each approach.

3.4.1 Node-level Behaviors and Generated Networks
Figure 12 shows an example of the node-level linking behavior of the AS-level Internet network on Jan. 5th, 2004,

estimated using three different approaches. In Approach 1, the probability that a node is chosen is determined by Equation (4)
with estimated additional attractiveness (A). In Approach 2, the node-level behavior is described by Equation (17), where
the parameters α and β of the power function are estimated using the ordinary least square regression (OLS). In the third
approach, the node-level behavior is obtained by Equation (20) and parameters β1 and β2 are estimated using the multinomial
logit choice models. A comparison of the estimated linking behaviors is shown in Table 3.

[Fig. 12 about here.]

[Table 3 about here.]

Based on the node-level behavior models derived by using the three approaches, the network topology of Internet on
Nov. 12th, 2007 is simulated using the real network topology on Jan. 5th, 2004 as the initial network. Since the A value
(additional attractiveness) in Approach 1 has different trends using OLS estimation and maximum likelihood estimation, we
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also use the A-value from both methods and compare the resulting networks. Figure 13 shows the degree distribution of
the simulated network structure based on different node-level behaviors. It is observed that all the four degree distribution
functions are close to each other. To quantify the differences between the four simulated degree distributions from the original
network, the Kullback-Leibler (KL) divergence [32] measure is adopted. The KL divergence is non-negative and zero if the
distributions match exactly. It is the expectation of the logarithmic difference between two probability distributions. The
larger the value, the less likely it is that the two distributions are the same. The KL divergence is calculated based on the
probability mass instead of the cumulative distribution. Figure 14 shows the logarithmic difference between the simulated
distribution and the true distribution at each degree point. The KL divergence values are as follows:

1. GPA with OLS approach: 0.098
2. GPA with maximum-likelihood approach: 0.192
3. Statistical regression-based approach: 0.141
4. DCM based approach: 0.271

[Fig. 13 about here.]

[Fig. 14 about here.]

The results show that the degree distribution of the network, which is generated with the node behavior model estimated
by Approach 1 with GPA model and OLS estimation, is more likely to match the degree distribution of the true Internet AS
network compared with other three approaches. However, to compare and evaluate the three approaches, we also compare
other commonly used network measures, shown in the Table 4, to evaluate the differences among the generated networks. As
shown in Table 5, the number of nodes and edges added during each step are the same for all the simulated networks because
the network formation process is the same and the difference is in the linking probability only. The average path lengths
(APL) of the generated networks are close to the true value. Specifically, the APL in Approach 1 with OLS estimation
is slightly lower than the true value, but the APL values with other approaches are slightly higher than the true network.
We observe that the clustering coefficients of all the simulated networks are less than that of the true network. This can
be explained as follows. High clustering coefficient in the AS-level Internet network results from a large number of peer-
to-peer relationships between ASes. However, in the approaches used in this paper, the peer-to-peer mechanism is not
explicitly included. We also observe a significant difference in the diameters of the true network and simulated networks.
The diameters of the simulated networks are around 10, whereas the diameter of the true network is 17. The potential reason
for this difference in the diameter is that the models in the three approaches do not account for the geographic aspects. In
the real world, when a new customer AS joins the network, it prefers to purchase service from a nearby provider in order
to minimize the linking and routing costs. As a summary, some differences are observed between the real Internet network
and the generated networks. These differences are due to a) the estimation process itself, and b) assumptions made about the
network formation process for the specific case study.

[Table 4 about here.]

[Table 5 about here.]

3.4.2 Generality and Extensibility
Out of the three approaches, the first approach has the advantage of being simple and easy to evaluate because of the

direct function mapping between degree distribution and node-level attributes, A, i.e., the node’s additional attractiveness.
However, it is based on an assumed behavior model of preferential attachment, and can be applied only if the network
degree distribution follows the power-law form. This is the major limitation for the first approach. Both the second and
third approaches have potential generality to be used in other similar problems in complex networks, without placing such
assumptions on the node-level behavior in advance.

The strategy of regarding the network evolution as a decision-making process is a promising approach to model the
evolution of endogenous networks. It has the advantage of providing an explanatory framework for the relationship between
the node-level preferences, node-level behaviors and the network structure. This is a fundamental aspect that the other
two approaches fail to address. Additionally, it provides a framework to integrate existing decision-centric models, such
as ABM and network formation game models, with the available network structure datasets. As we discussed before, the
DCM proposed in this paper does not account for other attributes of ASes, such as economic, traffic, geographic attributes.
Existing ABMs for the Internet have included these attributes. Thus, with the DCM, it is possible to setup a more realistic
model for reconstructing the Internet topology if information about these attributes is available.
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3.4.3 Computational Capability
A barrier in implementing the decision-centric approach is the computational burden. Since the number of alternatives

is large, the estimation problem becomes computationally expensive if each node is treated as an alternative. A potential
approach to manage this complexity is to reduce the size of the choice set by grouping the nodes with similar characteristics
(e.g., degree) into one group, and treating each group as an alternative as shown in the case study. This is only valid if
each node within a group is equivalent. Therefore, if the network size is small (e.g. hundreds or thousands of nodes) and
explanations are needed for interpreting the nodes’ behaviors, the third approach is a better choice, otherwise Approaches 1
and 2 are better.

4 CLOSING COMMENTS
The approaches discussed in this paper have potential applications in the area of complex systems analysis and design in

three ways. First, the proposed approaches are general enough to be used for other complex systems where network structure
datasets at different steps in the evolution process are available. Second, gaining an understanding of the underlying decisions
can help in creating better models to describe real-world systems. Third, obtaining a network’s node-level behavior can help
in guiding the evolution of complex systems. By using the decision models of the nodes, the future evolution of the network
can be predicted, assuming that the preferences of the nodes would remain the same. The models provide information about
how the network is expected to evolve, and how the future structure and performance can be directed by influencing node-
level decision models. Hence, we can influence the future network performance. The contribution of this paper does not only
help researchers gain a better understanding about how a real-world complex system evolves, but also provides a comparison
of different approaches for generating network topologies using datasets.

In summary, we show three approaches for estimating the node-level behaviors and preferences from network structure
datasets. An illustrative example, AS level Internet network, is used to show how the approaches can be applied to estimate
the AS-level behavior and to reconstruct the Internet topology with the estimated AS-level behaviors. Future work would
focus on relaxing some of the assumptions made in the models. For example, in this paper, we only consider the addition
of nodes in the network evolution. However, in reality, removal of nodes and link re-direction also occurs during network
evolution. Thus, consideration of decisions to remove nodes and to redirect links would be an essential aspect for further
improvement of the models. Additionally, other attributes of the nodes that may influence the node’s utility will be further
investigated. For example, in the Internet case study, economic factors such as the link creation costs and profits, geographic
location, type of AS, etc. play an important role in the creation of new links. Therefore these variables will be investigated in
the future to refine the discrete choice based model. Like any other data-driven modeling activity, the proposed approaches
cannot be utilized if the system is new or if it is impractical to collect network structure data. In such cases, the alternative
approach is to interview the decision makers to generate decision models. In scenarios where partial information about
network structure is available, it can be used in conjunction with surveys and interviews to build a more reliable model. Such
issues are avenues for potential future work. Finally, by utilizing theories from other disciplines such as economics, possible
incentives can then be designed and introduced into the network to achieve desired network properties or performance.
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Fig. 1. Five levels and the associated mappings in complex endogenously evolving networks
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Fig. 2. Complementary cumulative degree distribution of networks generated by generalized BA model with different A values
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Fig. 12. Comparison of the node-level behavior of AS-level Internet on Jan. 5th, 2004 deduced by three approaches
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Fig. 13. Comparison of complementary cumulative degree distribution between the real network and simulated network with three ap-
proaches
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Fig. 14. KL divergence on the degree distribution of simulated networks
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Table 1. Distinction between hierarchically designed systems and complex evolutionary systems

Hierarchically Designed Systems Complex Evolutionary Systems

Defining
characteristics

Set of interacting components forming an
integrated whole by designers

System evolves as a result of decisions and
behaviors of individual self-directed entities

Local entities No decision-making ability Self-directed, generally selfish

Design variables Components’ attributes such as dimensions,
material, etc.

Incentives to local entities and interacting
mechanisms

Design strategy Top-down hierarchical design Bottom-up evolutionary design

Examples of design
problems

Design of transportation network layout,
traditional power grid assignment and design,

optimizing flows on networks etc.

Traffic mechanism design, protocol design for
Internet, policy design for green energy, incentive

design etc.
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Table 2. An overview of the approaches presented in this paper

Generalized preferential
attachment (Section 2.1)

Statistical Regression-based
approach (Section 2.2)

Multinomial-logit choice
model (Sectio 2.3)

Inputs Single Instance of Network
Consecutive instances of the

network
Consecutive instances of the

model

Outputs Linking probability Linking probability
Linking probability and node’s

utility

Approach Continuum theory Regression Discrete choice

Behavior model Pj(t) =
G j(t)

∑
n
i=1 Vi(t)

d j(t)+
A j(t)

∑
n
i=1 Vi(t)

Best fitting model. Power
model is adopted in this paper.

p j = αdβ

j

P( j|CJ) =
eVjn

∑
J
i=1 eVin

Utility function:
V j = β0 j +β1 jd j

Parameters in the model G: Node’s fitness; A: node’s
additional attractiveness

α: coefficient; β: exponent
Vector β j that captures a

node’s preference

Estimation technique Function mapping Ordinary least square Maximum likelihood
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Table 3. Linking probability comparison

Approaches Node-level Behavior Models

Approach 1 - GPA Model
with OLS estimation

Pj =
d j+A

∑
J−1
i=1 (di+A)

where A changes over time ac-
cording to 5× 10−6J − 1.86,
and J is the number of nodes
in the network at time t

Approach 1 - GPA Model
with with Maximum likeli-
hood estimation

Pj =
d j−0.96

∑
J−1
i=1 (di−0.96)

Approach 2 - Regression-
based Model Pj = 1.97×10−5d0.959

j

Approach 3 - DCM

Pn( j|CJ) =
dβ1

j nβ2
j

∑
J
i=1 dβ1

i nβ2
i

β1 = 0.672 and β2 = 0.661
before Jan. 2nd , 2006. β1 =
0.428 and β2 = 0.525 after-
wards.
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Table 4. Metrics for evaluation

Metrics Relationship to Internet

Average Path Length (APL)
Cluster Coefficient

Diameter

Related to routing efficiency
Related to peering structure
and route resilience
Related to the span of Internet
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Table 5. Comparison of metrics in simulated networks

# of
Nodes

# of
Edges

Cluster
Coeffi. APL Diameter

True
Network 26475 53381 0.208 3.876 17

Approach
1 with
OLS

26475 53303 0.199 3.649 10

Approach
1 with

Maximum
likelihood

26475 53303 0.108 3.973 9

Approach
2 26475 53303 0.118 3.903 10

Approach
3 26475 53303 0.104 4.043 10
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